Simulation of EM-Wave Propagation from an Antenna Element

Maksims Abalenkovs Luis Cebamanos Dr Fumie Costen

School of Electrical and Electronic Engineering
University of Manchester

MANSKADS-3
Manchester, United Kingdom
SKADS Context

- SKADS Position: 2-PAD
- SKADS Activity:
 - numerical simulation of EM-wave propagation
 - various UWB antenna elements (geometric shape and material)
 - excitation source → antennas
- COTS → commercial software (MATLAB, CST Studio ++):
 - not enough precision, small-scale (up to 4 elements)
 - little parallelisation capabilities → in-house software
 - might be competitive in 5 years
Working procedure

- **Strong coupling:**
 - David Zhang \rightarrow element geometry, shape
 - Ahmed El-Makadema \rightarrow array geometry, placement

- **Input:** shape + placement

- pattern of EM-field distribution and coupling

- new shape + new placement

- ...
Antenna Element Design

Vivaldi Antenna – antenna best suited for transmission of broad spectrum signals.

Validation of a new antenna:

- Analysis of radiation pattern around the antenna

(a) Vivaldi Antenna Scheme

(b) Vivaldi Antenna Array
Perspective Antenna Designs

- (c) Comb-Line Vivaldi Antenna (CLVA)
- (d) Bunny Ear Comb-Line Antenna (BECA)
- (e) Octagon Rings Antenna (ORA)
Finite Difference Time Domain (FDTD)

Kane S. Yee, 1966, FDTD classical approach:

- Initial EM-field values
 - Maxwell’s Equations (ME)
 - system of hyperbolic PDE
 - unique solution

- Second order finite centred approximation to derivatives in ME

- Explicit algorithm
 - current values = function of previous values in time

- Simulation
 - CPU, memory, I/O-intensive

Figure: Yee Unit Cell
Frequency Dependent – FDTD (FD-FDTD)

- Reflects medium and material properties
- Permittivity ϵ and conductivity σ are frequency dependent

Figure: Yee Unit Cell
Method Implementation

- Set antenna geometry and material for the FD-FDTD calculation
- FD-FDTD simulation software → Fortran, MPI
 - Workload division → z-axis
 - Data output → textual ASCII and binary formats

Real-world simulation:
- 5000 time steps × 16 CPUs × 250 MB data files ≈ 19.07 TB
- Single file production time: 3-58 min

Data post-processing → shell scripts, Fortran, MPI
 - Point plotting
 - Plane visualisation

CPU frequency and RAM size are vital

Conclusion → optimisation of data production and post-processing
Produced Data: Structure and Character

One file for each time step for each processor, e.g. 100 time steps × 2 processors = 200 files

File:
 - Name: `<timestep>_<rank>.<format>`
 - Structure:

<table>
<thead>
<tr>
<th>Spatial Coordinates</th>
<th>Field Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>189</td>
<td>467</td>
</tr>
</tbody>
</table>
Achievements

- Achievements up to date:
 - simulation of specific pre-defined antenna shape
 - normal Vivaldi antenna design, specified by David, 1 element
 - developing the functionality for automatic radio environment setting
 - antenna shape recognition
 - improving the simulation efficiency (load-balancing)
 - non-dedicated I/O-server → data collection and output
Current Research Activities

- improving the efficiency of data post-processing
- near- to far-field conversion
- development of subgridding technique for the EM-wave propagation problem
SKA Comparison

- international SKA R&D:
 - ASTRON, simulation package

- Approaches for data storage
 - text, binary, scientific format, database

- SKA-ready performance
 - 1 element vs \(8 \times 8 \) element array

- Further challenges:
 - Computation and I/O speed-up
 - subgridding techniques, parallelisation, binary format
 - Data analysis speed-up
 - smarter and faster post-processing tools

- Publication
 - one conference paper submitted (HDF5)
 - journal and conference papers on subgridding expected
Discussion

- Questions
- Answers